6.2. Inverse of a 3 x 3 matrix

Adjoint of a square matrix

  • To find the adjoint of the a square matrix A:
    • We form the matrix C of cofactors.
    • We write the transpose of C, i.e. CT

Adjoint of a square matrix

Therefore:

\[\Large \textcolor{red}{\text{adj}(A) = C^T} \]

Example:


LaTeX in HTML
\[\Large A = \begin{bmatrix} 2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 5 & 0 \end{bmatrix} \]
\[\Large C = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \]
\[\Large C = \begin{bmatrix} -24 & 6 & 15 \\ 20 & -5 & -5 \\ 13 & 8 & -10 \end{bmatrix} \]
\[\Large C^T = \begin{bmatrix} -24 & 20 & 13 \\ 6 & -5 & 8 \\ 15 & -5 & -10 \end{bmatrix} \]
\[\Large adj(A)=\begin{bmatrix} -24 & 20 & 13 \\ 6 & -5 & 8 \\ 15 & -5 & -10 \end{bmatrix} \]

Pages: 1 2 3 4 5