1.2. Types of Matrices

Types of Matrices Based on Symmetry

  • A square matrix where the element at position (i, j) is equal to the element at position (j, i).
  • In simpler terms, it is symmetrical about the diagonal.
  • Example:
\[\Large Symmetric\;Matrix\;A = \begin{bmatrix} \color{blue}{1} & \color{red}{2} & \color{green}{3} \\ \color{red}{2} & \color{blue}{4} & \color{orange}{5} \\ \color{green}{3} & \color{orange}{5} & \color{blue}{6} \end{bmatrix} \]
  • \( A_{ij} = A_{ji} \)
  • For example:
    • \( A_{12} = A_{21} \)
    • \( A_{13} = A_{31} \)
  • A square matrix where the element at position (i, j) is the negative of the element at position (j, i), and diagonal elements are zero.
  • In simpler terms, it is symmetrical with opposite signs.
  • Example:
\[\Large A = \begin{bmatrix} \color{blue}{0} & \color{red}{-2} & \color{green}{3} \\ \color{red}{2} & \color{blue}{0} & \color{orange}{-4} \\ \color{green}{-3} & \color{orange}{4} & \color{blue}{0} \end{bmatrix} \]
  • \( A_{ij} = -A_{ji} \), meaning the element at \( (i, j) \) is the negative of the element at \( (j, i) \).
  • For example:
    • \( A_{12} = -A_{21} \), here \( A_{12} = -2 \) and \( A_{21} = 2 \).
    • \( A_{13} = -A_{31} \), here \( A_{13} = 3 \) and \( A_{31} = -3 \).
    • \( A_{23} = -A_{32} \), here \( A_{23} = -4 \) and \( A_{32} = 4 \).

Which of the following statements is TRUE about symmetric and skew-symmetric matrices?

Pages: 1 2 3 4 5 6