Types of Matrices Based on Triangular Structure
1. Upper Triangular Matrix
- A square matrix where all elements below the leading diagonal are zero.
- Example:
\[\Large
Upper\;Triangular\;Matrix\;C =
\begin{bmatrix}
\color{red}{2} & 4 & 6 \\
\color{blue}{0} & \color{red}{5} & 9 \\
\color{blue}{0} & \color{blue}{0} & \color{red}{3}
\end{bmatrix}
\]
2. Lower Triangular Matrix
- A square matrix where all elements above the leading diagonal are zero.
- Example:
\[\Large
Lower\;Triangular\;Matrix\;C =
\begin{bmatrix}
\color{red}{2} & \color{blue}{0} & \color{blue}{0} \\
4 & \color{red}{5} & \color{blue}{0} \\
6 & 9 & \color{red}{3}
\end{bmatrix}
\]
Which of the following is true about an Upper and Lower Triangular Matrix?