1.2. Types of Matrices

Types of Matrices Based on Elements

  • A matrix where all elements are zero is called a null matrix.
  • Example:
Null Matrix
\[\Large Null\;Matrix\;C = \begin{bmatrix} \color{blue}{0} & \color{blue}{0} & \color{blue}{0} \\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} \\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} \end{bmatrix} \]
  • Null matrices are denoted by 0.
  • A square matrix where all elements except those on the leading diagonal are zero.
  • Example:
Diagonal Matrix
\[\Large Diagonal\;Matrix\;D = \begin{bmatrix} \color{red}{2} & \color{blue}{0} & \color{blue}{0} \\ \color{blue}{0} & \color{red}{5} & \color{blue}{0} \\ \color{blue}{0} & \color{blue}{0} & \color{red}{8} \end{bmatrix} \]
  • Only the elements 2, 5, 8 are on the diagonal.
  • A diagonal matrix where all diagonal elements are 1.
  • Also called the identity matrix.
  • Example:
Unit Matrix
\[\Large Unit\;Matrix\;I = \begin{bmatrix} \color{red}{1} & \color{blue}{0} & \color{blue}{0} \\ \color{blue}{0} & \color{red}{1} & \color{blue}{0} \\ \color{blue}{0} & \color{blue}{0} & \color{red}{1} \end{bmatrix} \]
  • It behaves like the number 1 in arithmetic calculations.
Equation Centered
\[\Large A \cdot I = A\]
Unit Matrix Multiplication Example

Let \( A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \) and \( I = \begin{bmatrix} \color{red}{1} & \color{blue}{0} \\ \color{blue}{0} & \color{red}{1} \end{bmatrix} \).

Multiplying \( A \) by \( I \) gives:

\[\Large A \cdot I = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \cdot \begin{bmatrix} \color{red}{1} & \color{blue}{0} \\ \color{blue}{0} & \color{red}{1} \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \]
  • As expected multiplying a Matrix by a Unit Matrix will give us the same Matrix
MCQ – Types of Matrices

Which of the following is a characteristic of a null matrix?

Pages: 1 2 3 4 5 6