4.2. Determinant of a 3 x 3 matrix

How to calculate the determinant of a 3 × 3 matrix?


1. Select any row (or column) of the matrix

  • Choose any row or column of the matrix.
  • In this example we will choose the first row of the following matrix ‘A’.
LaTeX in HTML
\[\Large A = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 6 & 3 \\ 5 & 2 & 2 \end{bmatrix} \]

2. Find minors of all the elements in the selected row.

  • In this example we need to find minors of the elements 2, 1 and 4.

  • First let’s find the minor of the element ‘2’. (Minor M11)
LaTeX in HTML
\[\Large M_{11} = det~ \left\vert \begin{array}{ccc} 6 & 3 \\ 2 & 2 \end{array} \right\vert = 6×2~-~3×2 = \mathbf{6} \]
  • Then, find the minor of the element ‘1’. (Minor M12)
LaTeX in HTML
\[\Large M_{12} = det~ \left\vert \begin{array}{ccc} 1 & 3 \\ 5 & 2 \end{array} \right\vert = 1×2~-~3×5 = \mathbf{-13} \]
  • Finally, find the minor of the element ‘4’. (Minor M13)
LaTeX in HTML
\[\Large M_{13} = det~ \left\vert \begin{array}{ccc} 1 & 6 \\ 5 & 2 \end{array} \right\vert = 1×2~-~6×5 = \mathbf{-28} \]

3. Calculate the determinant

  • Finally, to calculate the determinant, multiply elements with their minors with the appropriate place sign assigned to each element.
LaTeX in HTML
\[\Large \begin{bmatrix} + & – & + \\ – & + & – \\ + & – & + \end{bmatrix} \]
LaTeX in HTML
\[\Large det(A) = 2(6) + (-1)(-13) + 4(-28) \] \[\Large det(A) = 12 + 13 – 112 \] \[\Large \mathbf{det(A) = -87} \]


  • Alternatively, all the elements in the selected row can be directly multiplied with their respective cofactors to get the determinant.

LaTeX in HTML

Find the minor of the element “5” of the below matrix.


\[\Large A = \begin{bmatrix} 3&4&1\\8&8& \color{blue}{5}\\1&0&9 \end{bmatrix} \]

Pages: 1 2 3 4 5