5.1. Cofactor matrix

Calculating the cofactor

  • Cofactor is the minor of the respective element with its place sign.
  • The cofactor can be calculated by simply multiplying the minor with the place sign or by using the following formula.
LaTeX in HTML
\[\Large C_{ij} = (-1)^{i+j}~M_{ij} \]
  • In the above formula,
    • Cij – Cofactor.
    • i – Row number.
    • j – Column number
    • Mij – Minor

First let’s calculate the cofactor of the element ‘2’ in the first row of the following matrix using the first method.

LaTeX in HTML
\[\Large A = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 6 & 3 \\ 5 & 2 & 2 \end{bmatrix} \]
  1. First calculate the cofactor of the element ‘2’. (Minor M11)
LaTeX in HTML
\[\Large M_{11} = det~ \left\vert \begin{array}{ccc} 6 & 3 \\ 2 & 2 \end{array} \right\vert = 6×2~-~3×2 = \mathbf{6} \]
  1. Next calculate the cofactor of the above element. (Element ‘2’.)
LaTeX in HTML
\[\large C_{11} = -(6) \] \[\large \mathbf{ C_{11} = -6} \]

Next let’s calculate the cofactor of the element ‘1’ of the first row using the formula.

  1. First calculate the minor of the element. (Minor M12)
LaTeX in HTML
\[\Large M_{12} = det~ \left\vert \begin{array}{ccc} 1 & 3 \\ 5 & 2 \end{array} \right\vert = 1×2~-~3×5 = \mathbf{-13} \]
  1. Then substitute the values to the formula and calculate the cofactor.
LaTeX in HTML
\[\Large C_{12} = (-1)^{1+2}~M_{12} \] \[\Large C_{12} = (-1)^{1+2}×-13 \] \[\Large C_{12} = (-1)^{3}×-13 \] \[\Large C_{12} = -1×-13 \] \[\Large \mathbf{ C_{12} = 13 }\]

LaTeX in HTML

What is the cofactor of the element ‘3’ in the second row of the following matrix.


\[\Large B = \begin{bmatrix} 2&1&2\\6& \color{blue}{3}&7\\5&4&1 \end{bmatrix} \]

Pages: 1 2 3 4 5