5.2. Adjoint of a Square Matrix

Steps to Find the Adjoint of a Square Matrix

  • Steps
    1. Calculate cofactors for each element of A.
    2. Form the cofactor matrix.
    3. Transpose the cofactor matrix to get the Adjoint of A.
  • Example:
LaTeX in HTML
\[\Large A = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 6 & 3 \\ 5 & 2 & 2 \end{bmatrix} \]
  • Let us find the cofactor Matrix for A.
LaTeX in HTML
\[\Large C = \begin{bmatrix} \color{red}{-24} & \color{green}{6} & \color{blue}{15} \\ \color{red}{-20} & \color{green}{5} & \color{blue}{-5} \\ \color{red}{13} & \color{green}{8} & \color{blue}{-10} \end{bmatrix} \]
  • Let us find the Transpose of C
LaTeX in HTML
\[\Large C^T = \begin{bmatrix} \color{red}{-24} & \color{red}{-20} & \color{red}{13} \\ \color{green}{6} & \color{green}{5} & \color{green}{8} \\ \color{blue}{15} & \color{blue}{-5} & \color{blue}{-10} \end{bmatrix} \]


Adjoint of a Matrix | Math Explanation

\[\Large \text{Since } \text{adj}(A) = C^T, \text{ therefore, } \text{adj}(A) = \begin{bmatrix} \color{red}{-24} & \color{red}{-20} & \color{red}{13} \\ \color{green}{6} & \color{green}{5} & \color{green}{8} \\ \color{blue}{15} & \color{blue}{-5} & \color{blue}{-10} \end{bmatrix}\]

Which of the following is the correct step to compute the adjoint of a square matrix?

Pages: 1 2 3