1. Solving linear equations

To solve the set of linear equations below, let’s try using this method:


LaTeX in HTML
\[\Large x_{1} + 2x_{2} – 3x_{3} = 2 \] \[\Large 2x_{1} – x_{2} – x_{3} = 11 \] \[\Large 3x_{1} + 2x_{2} + x_{3} = -5 \]


Step 1: Write in Matrix Form


LaTeX in HTML
\[\Large \begin{bmatrix} 1 & 2 & -3 \\ 2 & -1 & -1 \\ 3 & 2 & 1 \\ \end{bmatrix} · \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \\ -5 \end{bmatrix} \]

Step 2: Write in Augmented Matrix Form


LaTeX in HTML
\[\Large \begin{bmatrix} 1 & 2 & -3 & \big| & 3 \\ 2 & -1 & -1 & \big| & 11 \\ 3 & 2 & 1 & \big| & -5 \end{bmatrix} \]

Step 3: Row Operations

Now subtract 2 /1 times the first row from the second row and 3 / 1 times the first row from the third row. This gives:


LaTeX in HTML
\[\Large \begin{bmatrix} 1 & 2 & -3 & \big| & 3 \\ 0 & -5 & 5 & \big| & 5 \\ 0 & -4 & 10 & \big| & -14 \end{bmatrix} \]

Now subtract -4 / -5, i.e. 4 / 5 times the second row from the third row. The matrix then becomes:


LaTeX in HTML
\[\Large \begin{bmatrix} 1 & 2 & -3 & \big| & 3 \\ 0 & -5 & 5 & \big| & 5 \\ 0 & 0 & 6 & \big| & -18 \end{bmatrix} \]

Note that as a result of these steps, the matrix of coefficients of x has been reduced to a triangular matrix.

Finally, we detach the right-hand column back to its original position:


LaTeX in HTML
\[\Large \begin{bmatrix} 1 & 2 & -3 \\ 0 & -5 & 5 \\ 0 & 0 & 6 \\ \end{bmatrix} · \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ -18 \end{bmatrix} \]

Step 4: Back Substitution


LaTeX in HTML
\[\Large 6x_{3} = -18 ~~~~ \therefore \ x_{3} = -3 \]
\[\Large -5x_{2} + 5x_{3} = 5 ~~~~\therefore \ -5x_{2} = 5 + 15 = 20 ~~~~ \therefore \ x_{2} = -4 \]
\[\Large x_{1} + 2x_{2} -3x_{3} = 3 ~~~~ \therefore \ x_{1} – 8 + 9 = 3 ~~ \therefore \ ~~ x_{1} = -4 \]
\[\Large \therefore \ x_{1} = 2 ;~~ x_{2} = -4 ;~~ x_{3} = -3 \]


Note that when dealing with augmented matrix, we may, if we wish:

These operations are permissible since we are really dealing with the coefficients of both sides of the equations

Pages: 1 2 3 4 5