1. Solving linear equations

Gaussian elimination method


LaTeX in HTML
\[\Large \begin{bmatrix} a_{11} + a_{12}+ a_{13}…….. + a_{1n} \\ a_{21} + a_{22}+ a_{23}…….. + a_{2n} \\ ⋮~~~~~~~⋮~~~~~~⋮~~~~~~~~~~~~~~⋮ \\ a_{n1} + a_{n2}+ a_{n3}…….. + a_{nn} \end{bmatrix} · \begin{bmatrix} x_{1} \\ x_{2} \\ ⋮ \\ x_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ ⋮ \\ b_{n} \end{bmatrix} ~~~~i.e~ A·x = b \]

All the information for solving the set of equations is provided by the matrix of coefficients A and the column matrix b. If we write the elements of b within the matrix A, we obtain the augmented matrix B of the given set of equations.


LaTeX in HTML
\[\Large \begin{bmatrix} a_{11} + a_{12}+ a_{13}…….. + a_{1n} ~|~~ b_{1}\\ a_{21} + a_{22}+ a_{23}…….. + a_{2n} ~|~~b_{2}\\ ⋮~~~~~~~⋮~~~~~~⋮~~~~~~~~~~~~~~⋮~~~~~~~~~~~~|\\ a_{n1} + a_{n2}+ a_{n3}…….. + a_{nn} ~|~~b_{n} \end{bmatrix} \]

We then eliminate the elements other than a11 from the first column by subtracting a21/a11 times the first row from the second row and a31=a11 times the first row from the third row, etc.

This gives a new matrix of the form:


LaTeX in HTML
\[\Large \begin{bmatrix} a_{11} + a_{12}+ a_{13}…….. + a_{1n} ~|~~ b_{1}\\ 0 + c_{22}+ c_{23}…….. + c_{2n} ~~~~~|~~b_{2}\\ ⋮~~~~~~~⋮~~~~~~⋮~~~~~~~~~~~~~~⋮~~~~~~~~~~~~|\\ 0 + c_{n2}+ c_{n3}…….. + c_{nn} ~~~~~|~~d_{n} \end{bmatrix} \]

The process is then repeated to eliminate ci2 from the third and subsequent rows.

A specific example will explain the method, so move on to the next page

Pages: 1 2 3 4 5