1. Solving linear equations

Method

To solve the set of linear equations below, let’s try using this method:


LaTeX in HTML
\[\Large x_{1} + 2x_{2} + x_{3} = 4 \] \[\Large 3x_{1} + 4x_{2} + 2x_{3} = 2 \] \[\Large 5x_{1} + 3x_{2} + 5x_{3} = -1 \]


Step 1: Write in matrix form


LaTeX in HTML
\[\Large \begin{bmatrix} 1 & 2 & 1 \\ 3 & -4 & -2 \\ 5 & 3 & 5 \\ \end{bmatrix} · \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix} \]
\[\Large A · x = b~~~~~~~~~\therefore \ x = A^{-1} · b \]

Step 2: Find the inverse of A


LaTeX in HTML
\[\Large A^{-1} = – \frac{1}{35} \begin{bmatrix} -14 & 7 & 0 \\ -25 & 0 & 5 \\ 29 & 7 & -10 \\ \end{bmatrix} \]

Step 3: Solve the equations


LaTeX in HTML
\[\Large x=A^{-1}· b = -\frac{1}{35} \begin{bmatrix} -14 & 7 & 0 \\ -25 & 0 & 5 \\ 29 & 7 & -10 \\ \end{bmatrix} · \begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix} =~~ …….. \]
\[\Large x= -\frac{1}{35} \begin{bmatrix} -70 \\ -105 \\ 140 \\ \end{bmatrix} = \begin{bmatrix} 2\\ 3\\ -4 \end{bmatrix}
\]
\[\Large x= \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -4 \end{bmatrix} ~~~~~ \]
\[\Large \therefore \ x_{1}=2;~~x_{2}=3~;~~x_{3}=-4 \]

The essential intermediate results are as follows:

Pages: 1 2 3 4 5