3. Matrix Diagonalization

Steps to Diagonalize a Matrix

  • To confirm, check:
Diagonalization
\[\LARGE A = \color{red}{P} \color{blue}{D} \color{green}{P^{-1}} \]
  • P−1 is the inverse of P.
Verify A = P D P⁻¹
\[\Large A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} \]
\[\Large P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]
\[\Large D = \begin{bmatrix} \textcolor{red}{5} & 0 \\ 0 & \textcolor{blue}{1} \end{bmatrix} \]
\[\Large P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]
\[\Large P D = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \textcolor{red}{5} & 0 \\ 0 & \textcolor{blue}{1} \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 5 & -1 \end{bmatrix} \]
\[\Large P D P^{-1} = \begin{bmatrix} 5 & 1 \\ 5 & -1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} = A \]
MCQ on Matrix Diagonalization

Which of the following statements verifies that a matrix A is diagonalizable?

Pages: 1 2 3 4 5 6