2. Eigenvalues and Eigenvectors

Eigenvectors

  • Eigenvectors can be obtained by using eigenvalues that obtained previously.
  • An eigenvector needs to be obtained for each eigenvalue.
  • The following equation (The transformation equation) is used to find eigenvectors.

LaTeX in HTML
\[\Large Ax = \lambda x \]

The transformation equation of finding eigenvectors.


Or the above equation can also be transformed to this equation to calculate the eigenvectors. LaTeX in HTML
\[\Large Ax = \lambda x \] \[\Large Ax – \lambda x = 0 \] \[\Large (A – \lambda I)x = 0 \]



LaTeX in HTML
\[\Large \color{purple}{Eigenvalues,} \] \[\Large \lambda_{1} = 5 \] \[\Large \lambda_{2} = 1 \]

  • Now let’s obtain the eigenvector for each eigenvalue.

For λ1 = 5,

  • Substitute A and λ to the following equation.
LaTeX in HTML
\[\Large Ax = \lambda x \]
\[\Large \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} × \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = 5 \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \] \[\Large \begin{bmatrix} 4x_{1} + x_{2} \\ 3x_{1} + 2x_{2} \end{bmatrix} = \begin{bmatrix} 5x_{1} \\ 5x_{2} \end{bmatrix} \] \[\Large ↓ \] \[\Large 4x_{1} + x_{2} = 5x_{1} \] \[\Large 3x_{1} + 2x_{2} = 5x_{2} \]
LaTeX in HTML
\[\Large 4x_{1} + x_{2} = 5x_{1} \] \[\Large x_{2} = x_{1} \]

LaTeX in HTML
\[\Large 3x_{1} + 2x_{2} = 5x_{2} \] \[\Large 3x_{1} = 3x_{2} \] \[\Large x_{1} = x_{2} \]

LaTeX in HTML
\[\Large x_{1} = x_{2} \]
\[\Large x = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{1} \end{bmatrix} \]
\[\Large x = \begin{bmatrix} k \\ k \end{bmatrix} \] \[\Large x_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

For λ2 = 1,

  • Substitute A and λ to the following equation.
LaTeX in HTML
\[\Large Ax = \lambda x \]
\[\Large \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} × \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = 1 \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \] \[\Large \begin{bmatrix} 4x_{1} + x_{2} \\ 3x_{1} + 2x_{2} \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \] \[\Large ↓ \] \[\Large 4x_{1} + x_{2} = x_{1} \] \[\Large 3x_{1} + 2x_{2} = x_{2} \]
LaTeX in HTML
\[\Large 4x_{1} + x_{2} = x_{1} \] \[\Large 3x_{1} = -x_{2} \]

LaTeX in HTML
\[\Large 3x_{1} + 2x_{2} = x_{2} \] \[\Large 3x_{1} = -x_{2} \]

LaTeX in HTML
\[\Large 3x_{1} = -x_{2} \]
\[\Large x = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} x_{1} \\ -3x_{1} \end{bmatrix} \]
\[\Large x = \begin{bmatrix} k \\ -3k \end{bmatrix} \] \[\Large x_{2} = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \]

  • So following are the eigenvectors of the above matrix ‘A’,
LaTeX in HTML
\[\Large x_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} ~~~~~and~~~~~~ x_{2} = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \]

Also the eigenvalues and eigenvectors of a 3 × 3 matrix can be computed in the same method.




Pages: 1 2 3 4