7. Product of a Square Matrix and its Inverse

Introduction

  • Ever wondered what happens when you multiply a square matrix by its inverse? Let’s uncover this mathematical marvel step by step!
  • Let us consider the Square Matrix A and the inverse A-1
Matrix A and A Inverse
\[\Large A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 5 \\ 6 & 0 & 2 \\ \end{bmatrix} \]
\[\Large A^{-1} = \frac{1}{28} \begin{bmatrix} 2 & 4 & 7 \\ -22 & 16 & 7 \\ 6 & -12 & 7 \\ \end{bmatrix} \]
Matrix Multiplication
\[\Large A \cdot A^{-1} = \frac{1}{28} \begin{bmatrix} \textcolor{#007BFF}{1} & \textcolor{#007BFF}{2} & \textcolor{#007BFF}{3} \\ \textcolor{#007BFF}{4} & \textcolor{#007BFF}{1} & \textcolor{#007BFF}{5} \\ \textcolor{#007BFF}{6} & \textcolor{#007BFF}{0} & \textcolor{#007BFF}{2} \\ \end{bmatrix} \begin{bmatrix} \textcolor{#FF0000}{2} & \textcolor{#FF0000}{4} & \textcolor{#FF0000}{7} \\ \textcolor{#FF0000}{-22} & \textcolor{#FF0000}{16} & \textcolor{#FF0000}{7} \\ \textcolor{#FF0000}{6} & \textcolor{#FF0000}{-12} & \textcolor{#FF0000}{7} \\ \end{bmatrix} \]
  • Try the above multiplication and click next when you are ready to review your answer.
  • Unsure of how to multiply check out the Matrix multiplication lesson.

What is the result of multiplying Matrix \( A \) by its inverse \( A^{-1} \)?


Pages: 1 2 3